Background: Omacetaxine mepesuccinate (OM) is a semi-synthetic form of Homoharringtonine (HH), a cephalotaxine alkaloid. OM induces cell apoptosis by inhibiting peptide bond formation during mRNA translation, with rapid loss of short-lived proteins, such as MCL-1, c-MYC, and Cyclin D1 (Lu, J Hematol Oncol. 2014, 7: 2). Notably, cytarabine synergizes with HH in causing apoptosis of leukemia cells in vitro. A phase III RCT in China of 620 patients with de novo AML demonstrated superior CR and 3-yr survival rates upon addition of HH to a standard 2-drug AML induction therapy ('7 + 3'; Jin, Lancet Oncol. 2013, 14:599). Thus, we hypothesized that OM, at an appropriate dose, would similarly enhance the efficacy of a 7 + 3 regimen. OM is FDA-approved for the treatment of TKI-resistant CML. The MTD of 1.25 mg/m2/d SQ for 14 days every 28 days, as determined in a phase I/II CML trial of OM (Quintás-Cardama, Cancer 2007, 109: 248), served as a basis for the dose escalation used in this study.

Methods: The primary endpoint of this phase I safety trial was to determine the optimally safe and active dose (OD) of OM when added to a standard 7 + 3 induction regimen, cytarabine and idarubicin. OM was administered SQ q12h d1-7 with cytarabine (100mg/m2 CIV) d1-7 and idarubicin (12mg/m2 IV) d1-3. Four dose levels were tested, starting with OM 0.625 mg/m2 q12h (further dose levels: 1.25, 2.0, 3.0, and 4.2 mg/m2 q12h). All newly diagnosed, untreated de novo or secondary AML patients, aged 18-70y with ECOG PS of 0-3 were eligible for this study. Secondary endpoints included overall response rate (ORR) and overall and event free survival (OS, EFS). Hematologic toxicity (HT) was defined as incomplete hematologic recovery; ANC < 1.0 x 109/L or platelet count < 100 x 109/L present at d49, with the bone marrow documented to be free of leukemic infiltration. Dose escalation was based on the EffTox design (Biometrics 2004, 60:684), a Bayesian adaptive design which considers the trade-off between efficacy and toxicity in determining the OD for Phase II trials.

Results: Twenty-two patients, median age 58 (range 25-69) years were enrolled from June 2015 to June 2018. 12 patients (54.5%) had adverse cytogenetics, 6 (27%) intermediate risk, 3 (13.7%) favorable risk and 1 patient's cytogenetic risk was unknown (fibrotic BM). Eight patients demonstrated disease evolution from myelodysplastic syndrome (MDS). Altogether 16 of the 22 patients (73%) were deemed high risk based on cytogenetics or MDS-AML evolution. The EffTox design was implemented until cohort 4 (3 mg/m2 q12h), where 2 of 3 patients experienced a grade 5 non-hematologic toxicity (NHT), resulting in a dose-limiting toxicity (DLT). Since no DLTs were observed in cohort 3, an additional 5 patients were thus enrolled at this dose level to ensure safety. The OD was determined to be the dose level used in cohort 3: OM 2 mg/m2. No HTs were observed in 21 of 22 patients, (one patient not evaluable). The most common non-hematologic treatment emergent adverse events (TEAEs) of any grade were fever (68%), nausea (64%), vomiting (55%), hyperglycemia (41%), diarrhea (41%), mucositis (36%), headache (36%), sinus tachycardia (32%), rash/dermatitis (32%), and abdominal pain (32%). The most prevalent non-hematologic grade 3/4 TEAEs were febrile neutropenia (23%), hypoxia (18%), hyperglycemia (18%), and dyspnea (18%). ORR (CR and CRi) was 45.5%. Median OS was 605 days and EFS was 100 days.

Conclusion: In this population with predominantly high-risk AML, the combination of OM with a standard 7 + 3 regimen demonstrates a manageable safety profile with acceptable efficacy. As ~ 25% of patients achieving CR with '7 + 3' do so after a second induction (based on meta-analysis of 6 trials, n = 1980, see Cancer 2010, 116: 5012), the ORR here is comparable to those receiving a single standard of care induction. The results in this high-risk group are therefore promising and warrant further investigation in a phase II trial. At present, we are assessing leukemic blast MCL protein expression in stored pre-treatment samples to determine if this predicts OM efficacy.

NCT02440568. Teva has performed a Medical Accuracy Review of this abstract.

Disclosures

Khan:Teva: Speakers Bureau. Patel:Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Honoraria.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution